Skip to main content
Log in

Calculation of the Density and Activity of Water in ATPS Systems for Separation of Biomolecules

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

In this study, the perturbed hard sphere chain equation of state is utilized to calculate the activity of water in binary and ternary solutions of polyethylene glycol (PEG), salt and water. The liquid density of the binary and ternary solutions is also predicted. To estimate the water activity in PEG–water binary systems, a linear correlation is obtained for the binary interaction parameter between water and PEG. Then, using this correlation and without introducing any additional binary parameters, the water activities are predicted in ternary solutions of water, salt and PEG with different molecular weights (MW). Our results show that the mean absolute average relative deviation (AARD %) of water activity for binary PEG–water solutions in 298 K is 0.73 %. In addition, the water activity in ternary solutions of water and two PEGs with different MW is predicted within 0.31 % AARD %. Furthermore, the AARD % for prediction of water activities in binary PEG–water solutions over the temperature range 308–338 K is 0.41 %. Also, the water activities of aqueous two-phase systems are predicted with AARD % = 0.64 %. In this regard, no adjustable parameters were correlated between salt and PEG. Finally, liquid densities were predicted in binary solutions of water–PEG and ternary solutions of water–PEG–salt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

k ij :

Binary interaction parameter

R:

Number of segments

T :

Temperature (K)

x i :

Mole fraction of component i

Z :

Compressibility factor

EoS:

Equation of state

OF:

Objective function

PHSC:

Perturbed hard sphere chain

SAFT:

Statistical associating fluid theory

Assoc:

Association term

Cal:

Calculated

Expt:

Experimental

Ref:

Reference

Pert:

Perturbation term

i, j :

Component index

ε :

Dispersion energy parameter (J)

εAB:

Energy parameter of the association between sites A and B (J)

ρ :

Number density (number of molecules in unit volume), (Å−3)

σ :

Temperature independent segment diameter (Å)

κ AB :

Volume of interaction between sites A and B

References

  1. Haghtalab, A., Mokhtarani, B.: On extension of UNIQUAC–NRF model to study the phase behavior of aqueous two phase polymer–salt systems. Fluid Phase Equilib. 180, 139–149 (2001)

    Article  CAS  Google Scholar 

  2. Ninni, L., Camargo, M.S., Meirelles, A.J.A.: Water activity in poly(ethylene glycol) aqueous solutions. Thermochim. Acta 328, 169–176 (1999)

    Article  CAS  Google Scholar 

  3. Herskowitz, M., Gottlieb, M.: Vapor–liquid equilibrium in aqueous solutions of various glycols and poly(ethylene glycols). 2. Tetraethylene glycol and estimation of UNIFAC parameters. J. Chem. Eng. Data 29, 450–452 (1984)

    Article  CAS  Google Scholar 

  4. Sadeghi, R.: A modified segment-based nonrandom two-liquid model for the calculation of vapor–liquid equilibrium of aqueous polymer–salt solutions. Chem. Eng. Sci. 61, 7786–7794 (2006)

    Article  CAS  Google Scholar 

  5. Haghtalab, A., Joda, M.: Modification of NRTL–NRF model for computation of liquid–liquid equilibria in aqueous two-phase polymer–salt systems. Fluid Phase Equil. 278, 20–26 (2009)

    Article  CAS  Google Scholar 

  6. Xu, X., Madeira, P.P., Teixeira, J.A., Macedo, E.A.: A new modified Wilson equation for the calculation of vapor–liquid equilibrium of aqueous polymer solutions. Fluid Phase Equil. 213, 53–63 (2003)

    Article  CAS  Google Scholar 

  7. Song, Y., Lambert, S.M., Prausnitz, J.M.: A perturbed hard-sphere-chain equation of state for normal fluids and polymers. Ind. Eng. Chem. Res. 33, 1047–1057 (1994)

    Article  CAS  Google Scholar 

  8. Chiew, Y.C.: Percus–Yevick integral-equation theory for athermal hard-sphere chains. Mol. Phys. 70, 129–143 (1990)

    Article  CAS  Google Scholar 

  9. Feng, W., Hao, W., Xu, Z., Wang, W.: Comparison of perturbed hard-sphere-chain theory with statistical associating fluid theory for square-well fluids. Ind. Eng. Chem. Res. 39, 2559–2567 (2000)

    Article  CAS  Google Scholar 

  10. Favari, F., Bertucco, A., Elvassore, N., Fermeglia, M.: Multiphase multicomponent equilibria for mixtures containing polymers by the perturbation theory. Chem. Eng. Sci. 55, 2379–2392 (2000)

    Article  CAS  Google Scholar 

  11. Doghieri, F., Angelis, D.E., Baschetti, M.G., Sarti, G.C.: Solubility of gases and vapors in glassy polymers modeled through non-equilibrium PHSC theory. Fluid Phase Equilib. 241, 300–307 (2006)

    Article  CAS  Google Scholar 

  12. Hino, T., Song, Y., Prausnitz, J.M.: Equation-of-state analysis of binary copolymer systems. 1. Screening effect. Macromolecules 28, 5709–5716 (1995)

    Article  CAS  Google Scholar 

  13. Hino, T., Song, Y., Prausnitz, J.M.: Equation-of-state analysis of binary copolymer systems. 3. Miscibility maps. Macromolecules 28, 5725–5733 (1995)

    Article  CAS  Google Scholar 

  14. Hino, T., Song, Y., Prausnitz, J.M.: Equation-of-state analysis of binary copolymer systems. 2. Homopolymer and copolymer mixtures. Macromolecules 28, 5717–5724 (1996)

    Article  Google Scholar 

  15. Hino, T., Prausnitz, J.M.: Lower and upper critical ordering temperatures in compressible diblock copolymer melts from a perturbed hard-sphere-chain equation of state. Macromolecules 31, 2636–2648 (1998)

    Article  CAS  Google Scholar 

  16. Ko, S.J., Kim, S.J., Kong, S.H., Bae, Y.C.: Theoretical consideration on phase behaviors of poly(ethyleneoxide-block-propylene oxide)/LiCF3SO3 systems in lithium battery. Electrochim. Acta 49, 461–468 (2004)

    Article  CAS  Google Scholar 

  17. Gupta, B. Vapor–liquid equilibria for polymer + solvent systems: effect of “intermolecular repulsion”. PhD thesis, University of California, Berkeley (1995)

  18. Valavi, M., Dehghani, M.R.: Application of PHSC equation of state in prediction of gas hydrate formation. Fluid Phase Equilib. 333, 27–37 (2012)

    Article  CAS  Google Scholar 

  19. Valavi, M., Dehghani, M.R., Feyzi, F.: Calculation of liquid–liquid equilibirum in polymer electrolyte solutions using PHSC–electrolyte equation of state. Fluid Phase Equilib. doi:10.1016/j.fluid.2012.12.007

  20. Lee, B.S., Kim, K.C.: Phase equilibria of associating fluid mixtures using the perturbed-hard-sphere-equation of state combined with the association model. Korean J. Chem. Eng. 24, 133–147 (2007)

    Article  CAS  Google Scholar 

  21. Wertheim, M.S.: Fluids with highly attractive forces. J. Stat. Phys. 35, 19–34 (1984)

    Article  Google Scholar 

  22. Wertheim, M.S.: Fluids with highly directional attractive forces. II. Thermodynamic perturbation theory and integral equations. J. Stat. Phys. 35, 35–47 (1984)

    Article  Google Scholar 

  23. Wertheim, M.S.: Fluids with highly attractive forces. J. Stat. Phys. 42, 459–467 (1986)

    Article  Google Scholar 

  24. Wertheim, M.S.: Fluids with highly directional attractive forces. IV. Equilibrium polymerization. J. Stat. Phys. 42, 477–492 (1986)

    Article  Google Scholar 

  25. Wertheim, M.S.: Fluids of dimerizing hard sphere and fluid mixtures of hard spheres. J. Chem. Phys. 85, 2929–2935 (1986)

    Article  CAS  Google Scholar 

  26. Wertheim, M.S.: Thermodynamic perturbation theory of polymerization. J. Chem. Phys. 87, 7323–7345 (1987)

    Article  CAS  Google Scholar 

  27. Paredes, M.L.L., Nobrega, R., Tavares, F.W.: An equation of state for polymers and normal fluids using the square-well potential of variable well width. Ind. Eng. Chem. Res. 40, 1748–1754 (2001)

    Article  CAS  Google Scholar 

  28. Trivedi, S., Bhanot, C., Pandey, S.: Densities of over the temperature range (283.15 to 363.15). J. Chem. Thermodyn. 42, 1367–1371 (2010)

    Article  CAS  Google Scholar 

  29. Eliassi, A., Modarress, H., Mansoori, G.A.: Measurement of activity of water in aqueous poly(ethylene glycol) solutions (effect of excess volume on the Flory Huggins ø-parameter). J. Chem. Eng. Data 44, 52–55 (1999)

    Article  CAS  Google Scholar 

  30. Lin, D.-Q., Mei, L.H., Zhu, Z.-Q., Han, Z.-H.: An improved isopiestic method for measurement of water activities in aqueous polymer and salt solutions. Fluid Phase Equilib. 118, 241–248 (1996)

    Article  CAS  Google Scholar 

  31. Salabat, A., Nasirzadeh, K.: Measurement and prediction of water activity in PEG + (NH4)2SO4 + H2O using polymer scaling law. J. Mol. Liquids 103–104, 349–368 (2003)

    Article  Google Scholar 

  32. Lin, D.-Q., Zhu, Z.-Q., Mei, L.H., Yang, L.R.: Isopiestic determination of the water activities of poly(ethyleneglycol) + salt + water systems at 25°C. J. Chem. Eng. Data 41, 1040–1042 (1996)

    Article  CAS  Google Scholar 

  33. Ochs, L.R., Kabiri-Badr, M., Cabezas, J.H.: An improved isopiestic method to determine activities in multicomponent mixtures. AIChE J. 36, 1908–1912 (1990)

    Article  CAS  Google Scholar 

  34. Rahbari-Sisakht, M., Taghizadeh, M., Eliassil, A.: Densities and viscosities of binary mixtures of poly(ethylene glycol) and poly(propylene glycol) in water and ethanol in the 293.15–338.15 K temperature range. J. Chem. Eng. Data 48, 1221–1224 (2003)

    Article  CAS  Google Scholar 

  35. Cruz, R.D.C., Martins, R.J., Cardoso, D.M.C.M., Barcia, O.E.: Volumetric study of aqueous solutions of polyethylene glycol as a function of the polymer molar mass in the temperature range 283.15 to 313.15 K and 0.1 MPa. J. Solution Chem. 38, 957–981 (2009)

    Article  CAS  Google Scholar 

  36. Eliassi, A., Modaress, H., Mansoori, G.A.: Densities of poly(ethylene glycol) water mixtures in the 298.15–328.15 K temperature range. J. Chem. Eng. Data 43, 719–721 (1988)

    Article  Google Scholar 

  37. Zafarani-Moattar, M.T., Kabiri-Badr, M.: Volumetric properties of PEG + salt + water. Chem. Eng. Data 40, 559–562 (1995)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masood Valavi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valavi, M., Shirazian, S., Pour, A.F. et al. Calculation of the Density and Activity of Water in ATPS Systems for Separation of Biomolecules. J Solution Chem 42, 1423–1437 (2013). https://doi.org/10.1007/s10953-013-0040-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-013-0040-8

Keywords

Navigation